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 Vehicle Routing Problem with Time Windows,
 Part I: Route Construction and Local

 Search Algorithms

 This paper presents a survey of the research on the vehicle routing problem with time windows (VRPTW). The VRPTW can be described as the problem of designing least cost routes from one depot to a set of
 geographically scattered points. The routes must be designed in such a way that each point is visited only once
 by exactly one vehicle within a given time interval, all routes start and end at the depot, and the total demands
 of all points on one particular route must not exceed the capacity of the vehicle. Both traditional heuristic
 route construction methods and recent local search algorithms are examined. The basic features of each method
 are described, and experimental results for Solomon's benchmark test problems are presented and analyzed.

 Moreover, we discuss how heuristic methods should be evaluated and propose using the concept of Pareto
 optimality in the comparison of different heuristic approaches. The metaheuristic methods are described in the
 second part of this article.

 Key words: vehicle routing; time windows; heuristics; local search metaheuristics; tabu search; genetic
 algorithms
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 Olli Braysy

 Transportation is an important domain of human
 activity. It supports and makes possible most other
 social and economic activities. Whenever we use a
 telephone, shop at a food store, read our mail, or
 fly for business or pleasure, we are the beneficia
 ries of some system that has routed messages, goods,
 or people from one place to another. Freight trans
 portation, in particular, is one of today's most impor
 tant activities. Let us mention that the annual cost of
 excess travel in the United States has been estimated
 at some $45 billion (King and Mast 1997), and the
 turnover of goods transportation in Europe is some
 $168 billion per year. In the United Kingdom, France,
 and Denmark, for example, transportation represents
 some 15%, 9%, and 15% of national expenditures,
 respectively (Crainic and Laporte 1997, Larsen 1999).
 It is estimated that distribution costs account for
 almost half of the total logistics costs and in some
 industries, such as in the food and drink business,
 distribution costs can account for up to 70% of the
 value added costs of goods (De Backer et al. 1997,
 Golden and Wasil 1987). Halse (1992) reports that in
 1989, 76.5% of all the transportation of goods was
 done by vehicles, which also underlines the impor
 tance of routing and scheduling problems.

 The vehicle routing problem with time windows
 (VRPTW) is an important problem occurring in many
 distribution systems. The VRPTW can be defined as
 follows. Let G = (V, E) be a connected digraph con
 sisting of a set of ft + 1 nodes, each of which can be
 serviced only within a specified time interval or time
 window and a set E of arcs with nonnegative weights,
 djj, and with associated travel times, The travel
 time, tfj, includes a service time at node i, and a vehicle
 is permitted to arrive before the opening of the time

 window, and wait at no cost until service becomes pos
 sible, but it is not permitted to arrive after the latest
 time window. Node 0 represents the depot. Each node
 z, apart from the depot, imposes a service requirement,
 c\{, that can be a delivery from or a pickup for the
 depot. In most of the surveyed papers the objective is
 to find the minimum number of tours, K*, for a set
 of identical vehicles such that each node is reached
 within its time window and the accumulated service
 up to any node does not exceed a positive number Q
 (vehicle capacity). A secondary objective is often either
 to minimize the total distance traveled or the duration

 of the routes. All problem parameters, such as cus
 tomer demands and time windows, are assumed to be

 104
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 known with certainty. Moreover, each customer must
 be served by exactly one vehicle, thus prohibiting split
 service and multiple visits. The tours correspond to
 feasible routes starting and ending at the depot. Some
 of the most useful applications of the VRPTW include
 bank deliveries, postal deliveries, industrial refuse col
 lection, national franchise restaurant services, school
 bus routing, security patrol services, and JIT (just in
 time) manufacturing.
 The VRPTW has been the subject of intensive

 research efforts for both heuristic and exact optimiza
 tion approaches. Early surveys of solution techniques
 for the VRPTW can be found in Golden and Assad
 (1986,1988), Desrochers et al. (1988), and Solomon and

 Desrosiers (1988). Desrosiers et al. (1995) and Cordeau
 et al. (2001) focus mainly on exact techniques. Fur
 ther details on these exact methods can be found
 in Larsen (1999) and Cook and Rich (1999). Because
 of the high complexity level of the VRPTW and its
 wide applicability to real-life situations, solution tech
 niques capable of producing high-quality solutions
 in limited time, i.e., heuristics, are of prime impor
 tance. Over the last few years, many authors have
 proposed new heuristic approaches, primarily meta
 heuristics, for tackling the VRPTW. To our knowl
 edge, these have not been comprehensively surveyed
 and compared. The purpose of this two-part survey
 is to fill this gap. In the first part, we examine tradi
 tional heuristic approaches, that is, route construction
 and route improvement (local search) methods. These
 are of interest by themselves because they can pro
 vide good solutions with a low computational effort,
 but also because they are a major component of all
 metaheuristics for the VRPTW. Metaheuristics are dis

 cussed in the second part of this survey
 The remainder of this paper is organized as follows.

 Section 1 is devoted to a discussion of how heuristics
 are to be evaluated. Route construction techniques are
 reviewed in ?2 and route improvement (local search)

 methods in ?3. Finally, ?4 concludes the paper.

 1. Evaluation of Heuristics
 Evaluation of any heuristic method is subject to the
 comparison of a number of criteria that relate to
 various aspects of algorithm performance. Examples
 of such criteria are running time, quality of solu
 tion, ease of implementation, robustness, and flexi
 bility (Barr et al. 1995, Cordeau et al. 2002). Because
 heuristic methods are ultimately designed to solve
 real-world problems, flexibility is an important con
 sideration. An algorithm should be able to easily han
 dle changes in the model, the constraints, and the
 objective function. As for robustness, an algorithm
 should not be overly sensitive to differences in prob
 lem characteristics: A robust heuristic should not per

 form poorly on any instance. Moreover, an algorithm
 should be able to produce good solutions every time
 it is applied to a given instance. This is to be high
 lighted because many heuristics are nondeterminis
 tic, and contain some random components such as
 randomly chosen parameter values. The output of
 separate executions of these nondeterministic meth
 ods on the same problem is, in practice, never the
 same. This makes it difficult to analyze and compare
 results. Using only the best results of a nondetermin
 istic heuristic, as is often done in the literature, may
 create a false picture of its real performance. Thus,
 we consider average results based on multiple execu
 tions on each problem an important basis for the com
 parison of nondeterministic methods. Furthermore, it
 would also be important to report the worst-case per
 formance. Extensive discussions on these subjects can
 be found in Cordeau et al. (2002).

 The time a heuristic takes to produce good qual
 ity solutions can be crucial when choosing between
 different techniques. Similarly, the quality of the final
 solution, as measured by the objective function, is
 important. How close the solution is to the optimal
 solution is a standard measure of quality, or if the
 heuristic is designed to simply produce feasible solu
 tions, then the ability of the heuristic to provide such
 solutions is important.

 There is generally a trade-off between run time and
 solution quality?the longer a heuristic is run, the bet
 ter the quality of the final solution. A compromise is
 needed so that good quality solutions are produced in
 a reasonable amount of time. Basically, this trade-off
 between run time and solution quality can be viewed
 in terms of a multiobjective optimization in which
 the two objectives are balanced. Performance mea
 sures for heuristics can be plotted in two-dimensional
 space, with the first dimension corresponding to run
 time and the second to solution quality. In that space,
 points such that there exist no other points with bet
 ter values on both dimensions are said to be Pareto

 optimal; they define effective compromises between
 the objectives. This is illustrated in Figure 10 of ?3,

 where points Antes and Derigs (1995), Russell (1995),
 and Braysy (2003) are the Pareto optimal ones. The
 choice between different heuristic approaches yield
 ing Pareto optimal results depends on the preferences
 of the decision maker and the situation at hand.

 By far, the most common method of evaluating the
 solution quality of a heuristic algorithm is empiri
 cal analysis. In general, empirical analysis involves
 testing the heuristic across a wide range of problem
 instances to get an idea of overall performance. To
 arrive at conclusions that have meaning in a statistical
 sense, experimental design should ideally be used on
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 different levels of the various algorithm parameters
 and the results compared by appropriate techniques.

 In the actual comparison of heuristics, one often
 faces a number of difficulties. The most obvious dif

 ficulty is making the competition fair. Differences
 between machines first come to mind. In this paper,
 we address this issue by adjusting reported running
 times by the factors given by Dongarra (1998). Even

 more difficult issues to address are differences in cod

 ing skill, tuning, and effort invested (Hooker 1995).
 Another difficulty faced, especially in the VRPTW

 context, is that often only the best results obtained
 during the whole computational study are reported.
 Moreover, in some cases the authors do not report
 the number of runs or CPU time required to get the
 reported results. In these cases it is impossible to con
 clude anything about the efficiency of the methods, or
 compare these methods with other approaches. The
 only adequate basis for comparison of these meth
 ods would be optimal solutions, because if enough
 time is available, it is always preferable to solve the
 problems to optimality using exact methods. To be
 able to reach proper conclusions, in addition to the
 number of runs and time consumption, one should
 answer questions such as what are the limits of the
 given algorithm, i.e., how good are the best results
 that can be obtained using the particular approach,
 and how good a solution can be obtained in a given
 amount of time. One should, in other words, report
 results obtained using different computation times,
 and observe how much time is needed to obtain
 results of a given quality. Moreover, in our opinion,
 figures describing the relationship between solution
 quality and computation time would greatly facili
 tate the analysis. Taillard (2001) extensively discusses
 this issue and proposes reporting an absolute com
 putational effort, such as the number of iterations
 instead of computating times, and using probability
 diagrams based on repeated Mann-Whitney statisti
 cal tests. Obviously, such an approach is not possible
 when one relies on previously published results as we
 do here.

 In the VRPTW context, the most common way
 to compare heuristics is the results obtained for
 Solomon's (1987) 56 benchmark problems. These
 problems have 100 customers, a central depot, capac
 ity constraints, time windows on the time of deliv
 ery, and a total route time constraint. The Cl and
 C2 classes, have customers located in clusters, and in
 the Rl and R2 classes the customers are at random
 positions. The RC1 and RC2 classes contain a mix of
 both random and clustered customers. Each class con

 tains between 8 and 12 individual problem instances,
 and all problems in any one class have the same cus
 tomer locations and the same vehicle capacities; only
 the time windows differ. In terms of time window

 density (the percentage of customers with time win
 dows), the problems have 25%, 50%, 75%, and 100%
 time windows. The Cl, Rl, and RC1 problems have a
 short scheduling horizon and require 9 to 19 vehicles.
 Short horizon problems have vehicles that have small
 capacities and short route times, and cannot service

 many customers at one time. Classes C2, R2, and RC2
 are more representative of "long-haul" delivery with
 longer scheduling horizons and fewer (two to four)
 vehicles. Both travel time and distance are given by
 the Euclidean distance between points.

 The results are usually ranked according to a hier
 archical objective function, where the number of vehi
 cles is considered as the primary objective, and for
 the same number of vehicles, the secondary objective
 is often either total traveled distance or total dura

 tion of routes. Therefore, a solution requiring fewer
 routes is always considered better than a solution

 with more routes, regardless of the total traveled dis
 tance. According to Braysy (2001) these two objectives
 are very often conflicting, meaning that the reduction
 in number of vehicles often causes increase in total
 traveled distance. Thus, a better solution in terms of
 total distance can be obtained by increasing the num
 ber of routes. Some other papers report similar find
 ings; see, for example, Caseau and Laburthe (1999).

 2. Route Construction Heuristics
 Route construction heuristics select nodes (or arcs)
 sequentially until a feasible solution has been created.

 Nodes are chosen based on some cost minimization
 criterion, often subject to the restriction that the selec
 tion does not create a violation of vehicle capacity
 or time window constraints. Sequential methods con
 struct one route at a time, while parallel methods
 build several routes simultaneously.

 Solomon (1986) proposes a so-called route-first
 cluster-second scheme using a giant-tour heuristic.
 First, the customers are scheduled into one giant tour,
 which is then divided into a number of smaller routes.

 The initial giant tour could, for example, be gener
 ated as a traveling salesman tour without considering
 the capacity and time constraints. No computational
 results are given in the paper for the heuristic.

 Solomon (1987) describes several heuristics for the
 VRPTW. One of the methods is an extension to
 the savings heuristic of Clarke and Wright (1964). The
 savings method, originally developed for the classical
 VRP, is probably the best-known route construction
 heuristic. It begins with a solution in which every
 customer is supplied individually by a separate
 route. Combining the two routes serving, customers
 z and respectively, results in a cost savings of
 Sf/ = di0 + doj - dq. Clarke and Wright (1964) select the
 arc (z,;) linking customers z and ; with maximum S?;,
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 subject to the requirement that the combined route
 is feasible. With this convention, the route combi
 nation operation is applied iteratively. In combining
 routes, one can simultaneously form partial routes for
 all vehicles or sequentially add customers to a given
 route until the vehicle is fully loaded. To account for
 both the spatial and temporal closeness of customers,
 Solomon sets a limit to the waiting time of the route.
 The savings method is illustrated in Figure 1.

 The second heuristic, a time-oriented nearest neigh
 bor, starts every route by finding an unrouted cus
 tomer closest to the depot. At every subsequent
 iteration, the heuristic searches for the customer clos
 est to the last customer added into the route and adds

 it at the end of the route. A new route is started any
 time the search fails to find a feasible insertion place,
 unless there are no more unrouted customers left. The

 metric used to measure the closeness of any pair of
 customers attempts to account for both geographical
 and temporal closeness of customers.

 The most successful of the three proposed sequen
 tial insertion heuristics is called II. A route is first
 initialized with a "seed" customer and the remain
 ing unrouted customers are added into this route
 until it is full, with respect to the scheduling hori
 zon and/or capacity constraint. If unrouted customers
 remain, the initializations and insertion procedures
 are then repeated until all customers are serviced. The
 seed customers are selected by finding either the geo
 graphically farthest unrouted customer in relation to
 the depot or the unrouted customer with the low
 est allowed starting time for service. After initializing
 the current route with a seed customer, the method
 uses two subsequently defined criteria, cx(i, u,j) and
 c2(i,u,j), to select customer u for insertion between
 adjacent customers i and ; in the current partial route.
 Let (iQ, ix,i2/..., im) be the current route, with z0 and
 im representing the depot. For each unrouted cus
 tomer u, we first compute its best feasible insertion
 cost on the route as

 c1(i(u),u,j(u)) = min c^i uu,i), (1) p=l,m r r

 Figure 1 The Savings Heuristic
 Note. In the left part, customers / and j are served by separate routes; in the

 right part, the routes are combined by inserting customer j after /'.

 Next, the best customer u* to be inserted in the route
 is the one for which

 C2{i(U*),U*,j(ll*))

 = max{c2(/(w), u, j(u)) | u is unrouted and

 the route is feasible}. (2)

 Client w* is then inserted into the route between i(u*)
 and j(u*). When no more customers with feasible
 insertions can be found, the method starts a new
 route, unless it has already routed all customers. More
 precisely cx{i, u,j) is calculated as

 cx(i, u, j) = aiCn(z, u, j) + a2c12(i, u, j), (3)
 where

 a1 + a2 = l, ?i>0, ot2>Q,
 Cn(i> u, j) = diu + duj - fidijf fi > 0, (4)

 Cn(i,u,j) = bju-bj, (5)

 and diu, d^f and di; are distances between customers i
 and u, u and and i and respectively. Parameter \x
 controls the savings in distance, and bjU denotes the
 new time for service to begin at customer given
 that u is inserted on the route and bj is the beginning
 of service before insertion. The criterion c2(i,u,j) is
 calculated as follows

 c2(h u, j) = \d0u - ct(i, u, j), A > 0. (6)

 Parameter A is used to define how much the best
 insertion place for an unrouted customer depends
 on its distance from the depot, and on the other
 hand how much the best place depends on the extra
 distance and extra time required to visit the cus
 tomer by the current vehicle. The second type of pro
 posed insertion heuristics (12) aims to select customers
 whose insertion costs minimize a measure of total
 route distance and time, and the third approach (13)
 accounts for the urgency of servicing a customer.

 Dullaert (2000) and Dullaert and Braysy (2003) ar
 gue that Solomon's time insertion criterion cl2(i, u, j)
 underestimates the additional time needed to insert
 a new customer u between the depot and the first
 customer in the partially constructed route. This can
 cause the insertion criterion to select suboptimal
 insertion places for unrouted customers. Thus, a route

 with a relatively small number of customers can have
 a larger schedule time than necessary. The author
 introduces new time insertion criteria to solve the

 problem and concludes that the new criteria offer sig
 nificant cost savings starting from more than 50%.
 These cost savings, however, decrease as the number
 of customers per route increases.

 Solomon's (1987) time-oriented sweep heuristic is
 based on the idea of decomposing the problem into
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 a clustering stage and a scheduling stage. In the
 first phase, customers are assigned to vehicles as in
 the original sweep heuristic (Gillett and Miller 1974).
 Here, a "center of gravity" is computed and the cus
 tomers are partitioned according to their polar angle.
 In the second phase, customers assigned to a vehicle
 are scheduled using an insertion heuristic of type II.

 Potvin and Rousseau (1993) introduce a parallel
 version of Solomon's insertion heuristic II, where the
 set of m routes is initialized at once. The authors
 use Solomon's sequential insertion heuristic to deter
 mine the initial number of routes and the set of seed
 customers. The selection of the next customer to be

 inserted is based on a generalized regret measure over
 all routes. A large regret measure means that there is
 a large gap between the best insertion place for a cus
 tomer and its best insertion places in the other routes.

 Foisy and Potvin (1993) implemented the above
 described parallel version of Solomon's insertion
 heuristic on parallel hardware consisting of two to
 six Sun 3 workstation transputers. The parallelism is
 exploited in the calculation of insertion cost for each
 customer. The selection of the best customer for inser

 tion is then run only on half of the available pro
 cessors. To reduce the unequal workload among the
 processors, unrouted customers are reassigned among
 the processors, so as to reduce the average processor's
 idle time. The authors conclude that the overall reduc

 tion in computation time is linear with the number
 of processors for the distributed part of the heuristic
 algorithm.

 Ioannou et al. (2001) use the generic sequential
 insertion framework proposed by Solomon (1987) to
 solve a number of theoretical benchmark problems
 and an industrial example from the food industry. The
 proposed approach is based on new criteria for cus
 tomer selection and insertion that are motivated by
 the minimization function of the greedy look-ahead
 solution approach of Atkinson (1994). The basic idea
 behind the criteria is that a customer u selected for

 insertion into a route should minimize the impact of
 the insertion on the customers already on the route

 under construction, on all nonrouted customers, and
 on the time window of customer u, himself.

 Balakrishnan (1993) describes three heuristics for
 the vehicle routing problem with soft time windows
 (VRPSTW). The heuristics are based on nearest neigh
 bor and Clarke-Wright savings rules, and they differ
 only in the way used to determine the first customer
 on a route and in the criteria used to identify the
 next customer for insertion. The motivation behind

 VRPSTW is that by allowing limited time window
 violations for some customers, it may be possible
 to obtain significant reductions in the number of
 vehicles required and/or the total distance or time
 of all routes. Among the soft time window problem
 instances, dial-a-ride problems play a central role.

 Bramel and Simchi-Levi (1996) propose an asymp
 totically optimal heuristic based on the idea of solving
 the capacitated location problem with time windows
 (CLPTW). In CLPTW, the objective is to select a sub
 set of possible sites, to locate one vehicle to each
 site, and to assign customers to the vehicles. In the
 VRPTW context, this selection of locations for vehi
 cles refers to selecting a set of seed customers that
 initialize the routes. The authors use a Lagrangian
 relaxation-based technique to solve the CLPTW and
 the other customers are inserted in greedy order into
 simple tours by favoring customers that least increase
 the distance traveled. The authors conclude that their

 heuristic provides a better solution than Solomon's
 heuristic for 25 of the 56 problems using reasonable
 running times.

 Table 1 compares some of the described route con
 struction algorithms. The first column to the left indi
 cates the authors. Columns Rl, R2, Cl, C2, RC1, and
 RC2 present the average number of vehicles and aver
 age total distance with respect to the six problem
 groups of Solomon (1987). Finally, the rightmost col
 umn indicates the cumulative number of vehicles and

 cumulative total distance over all 56 test problems.
 In the lower part of the table, we report information
 regarding the computer used, number of runs, and
 average time consumption in minutes as reported by

 Table 1  Route Construction Heuristics

 Author R1 R2 C1 C2 RC1 RC2 CNV/CTD

 (1) Solomon (1987) 13.58 3.27 10.00 3.13 13.50 3.88 453
 1,436.7 1,402.4 951.9 692.7 1,596.5 1,682.1 73,004

 (2) Potvin etal. (1993) 13.33 3.09 10.67 3.38 13.38 3.63 453
 1,509.04 1,386.67 1,343.69 797.59 1,723.72 1,651.05 78,834

 (3) loannou etal. (2001) 12.67 3.09 10.00 3.13 12.50 3.50 429
 1,370 1,310 865 662 1,512 1,483 67,891

 Note. For all algorithms, the average results for Solomon's benchmarks are described. The notations CNV and CTD
 in the rightmost column indicate the cumulative number of vehicles and cumulative total distance over all 56 test
 problems.

 (1) DEC 10,1 run, 0.6 min.; (2) IBM PC, 1 run, 19.6 min.; (3) Intel Pentium 133 MHz, 1 run, 4.0 min.
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 the authors. We could not include all the algorithms
 described in the table due to lack of information (not
 all authors report results properly or use Solomon's
 problem set). In Table 1, the number of vehicles is the
 primary minimization objective, and the secondary
 objective is the total duration of routes in Solomon
 (1987) and Potvin and Rousseau (1993) and the total
 distance in loannou et al. (2001). Thus, in some cases,
 there may be a slight overestimation of the total
 distance values of Solomon (1987) and Potvin and
 Rousseau (1993). The methods by Solomon (1987) and
 Potvin and Rousseau (1993) are coded in Fortran;
 loannou et al. (2001) do not report the programming
 language used. Finally, because we used rounded dis
 tance measures reported by other authors to calculate
 the cumulative total distance (CTD), we rounded the
 values to integers in Tables 1 and 2.

 It seems that loannou et al. (2001) produce the
 best results, though at the cost of higher computation
 times. As for the other two methods, Solomon (1987)
 seems to be better than Potvin and Rousseau (1993)
 in clustered problem groups Cl and C2, while the
 opposite is true for the other problem groups. These
 heuristics are very fast, and there are no significant
 differences in the computational burden if one takes
 into account the differences in the hardware used.

 Compared to local search approaches, these construc
 tion heuristics are considerably faster, as one can see

 from Figure 10. However, these simple procedures
 lack in solution quality compared to more sophisti
 cated approaches.

 3. Solution Improvement Methods
 Classical local search methods form a general class
 of approximate heuristics based on the concept of
 iteratively improving the solution to a problem by
 exploring neighboring ones. To design a local search
 algorithm, one typically needs to specify the follow
 ing choices: how an initial feasible solution is gen
 erated, what move-generation mechanism to use, the
 acceptance criterion, and the stopping test. The move
 generation mechanism creates the neighboring solu
 tions by changing one attribute or a combination of
 attributes of a given solution. Here attribute could
 refer, for example, to arcs connecting a pair of cus
 tomers. Once a neighboring solution is identified,
 it is compared against the current solution. If the
 neighboring solution is better, it replaces the current
 solution, and the search continues. Two acceptance
 strategies are common in the VRPTW context, namely
 first-accept (FA) and best-accept (BA). The first-accept
 strategy selects the first neighbor that satisfies the pre
 defined acceptance criterion. The best-accept strategy
 examines all neighbors satisfying the criterion and
 selects the best among them.

 Table 2 Local Search Algorithms

 Author  R1  R2  C1  C2  RC1  RC2  CNV/CTD

 (1) Thompson et al. (1993)

 (2) Potvin et al. (1995)

 (3) Russell (1995)

 (4) Antes et al. (1995)

 (5) Prosser et al. (1996)

 (6) Shaw (1997)

 (7) Shaw (1998)

 (8) Caseau et al. (1999)

 (9) Schrimpf et al. (2000)

 (10) Cordone et al. (2001)

 (11) Braysy (2003)

 13.00
 1,356.92

 13.33
 1,381.9

 12.66
 1,317

 12.83
 1,386.46

 13.50
 1,242.40

 12.31
 1,205.06

 12.33
 1,201.79

 12.42
 1,233.34

 12.08
 1,211.53

 12.50
 1,241.89

 12.17
 1,253.24

 3.18
 1,276.00

 3.27
 1,293.4

 2.91
 1,167

 3.09
 1,366.48

 4.09
 977.12

 3.09
 990.99

 2.82
 949.27

 2.91
 995.39

 2.82
 1,039.56

 10.00
 916.67
 10.00

 902.9
 10.00

 930
 10.00

 955.39
 10.00

 843.84
 10.00
 8.28.38
 10.00

 828.38
 10.00

 828.38
 10.00

 828.38
 10.00

 834.05
 10.00

 832.88

 3.00
 644.63

 3.13
 653.2

 3.00
 681

 3.00
 717.31

 3.13
 607.58

 3.00
 596.63

 3.00
 589.86

 3.00
 591.78

 3.00
 593.49

 13.00
 1,514.29

 13.25
 1,545.3

 12.38
 1,523

 12.50
 1,545.92

 13.50
 1,408.76

 12.00
 1,360.40

 11.95
 1,364.17

 12.00
 1,403.74

 11.88
 1,361.76

 12.38
 1,408.87

 11.88
 1,408.44

 3.71
 1,634.43

 3.88
 1,595.1

 3.38
 1,398

 3.38
 1,598.06

 5.13
 1,111.37

 3.38
 1,220.99

 3.38
 1,097.63

 3.38
 1,139.70

 3.25
 1,244.96

 438
 6,8916

 448
 69,285

 424
 65,827

 429
 71,158

 471
 58,273

 420
 58,927

 412
 56,830

 422
 58,481

 412
 59,945

 Note. For each method two average results for Solomon's benchmarks are presented. The rightmost CNV and CTD indicate the
 cumulative number of vehicles and cumulative total distance over all test problems.

 (1) PC/AT 12 MHz, 4 runs, 1.8 min.; (2) Sparc workstation, -, 3.0 min.; (3) PC/486/DX2 66 MHz, 3 runs, 1.4 min.; (4) RS6000/530,
 4 runs, 3.6 min.; (5) -, -, -; (6) DEC Alpha, 3 runs, 2 hours; (7) Sun Ultra Sparc 143 MHz, 6 runs, 1 hour; (8) Pentium 300 MHz,
 1 run, 5 min.; (9) RS 6000, -, 30 min.; (10) Pentium 166 MHz, 1 run, 15.7 min.; (11) Pentium 200 MHz, 1 run, 4.6 min.
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 The local optimum produced by any local search
 procedure can be very far from the optimal solu
 tion. Local search methods perform a myopic search
 because they only sequentially accept solutions
 that produce reductions in the objective function
 value. Thus, the outcome depends heavily on initial
 solutions and the neighborhood generation mecha
 nism used. Most iterative improvement methods that
 have been applied to vehicle routing and scheduling
 problems are edge-exchange algorithms.

 The edge-exchange neighborhoods for a single
 route are the set of tours that can be obtained from

 an initial tour by replacing a set of k of its edges by
 another set of k edges. Such replacements are called
 /c-exchanges, and a tour that cannot be improved
 by a fc-exchange is said to be /c-optimal. Verifying
 fc-optimality requires 0(nk) time. Figure 2 illustrates
 2-exchange or 2-opt. It tries to improve the tour by
 replacing two of its edges by two other edges and
 iterates until no further improvement is possible.
 Russell (1977) reports early work on the VRPTW

 for a fc-optimal improvement heuristic. The so-called
 M-tour approach was effective in solving an actual
 problem with a few time-constrained customers. A
 solution for a 163-customer problem with 15% time
 constrained customers was generated in less than
 90 seconds of IBM 370/168 CPU time.

 Efficient implementations for speeding up the
 screening of infeasible solutions and the evaluation
 of the objective function are reported in Savelsbergh
 (1986), Solomon and Desrosiers (1988), Solomon et al.
 (1988), Savelsbergh (1990), and Savelsbergh (1992).
 The techniques used involve preprocessing, tai
 lored updating mechanisms, and lexicographic search
 strategies.

 Baker and Schaffer (1986) report on a computa
 tional study of route improvement procedures, which
 are applied to heuristically generated initial solu
 tions. Time-oriented nearest neighbor and three dif
 ferent cheapest insertion algorithms with differing
 cost functions are used for solution construction pur
 poses. The cost functions consider one or more of the
 following components: distance, increase in arrival

 Figure 2 2-0pt Exchange Operator
 Note. The edges (/, / +1) and (j, j +1) are replaced by edges (/, j) and
 (/ +1, / +1), thus reversing the direction of customers between / +1 and j.

 time, and waiting time. The improvement meth
 ods considered are extensions to the VRPTW of the

 2-opt and 3-opt edge exchange procedures of Lin
 (1965). Both intraroute and interroute exchanges are
 tested. The authors conclude that the best overall
 solutions are usually obtained from the best start
 ing solutions, and that, generally, the cheapest inser
 tion procedures outperformed the nearest neighbor
 ones. The authors also conclude that only less than
 10% of the solution improvements involve the rever
 sal of the orientation of a sequence of two or more
 customers.

 Van Landeghem (1988) presents a bicriteria heuris
 tic based on the savings method of Clarke and Wright
 (1964). More precisely, the author proposes combining
 the original savings measure in terms of travel time

 with so-called 'Toss of flexibility." The flexibility is
 defined as the difference between customer time win

 dow length and route time window length after com
 bining. Route time window refers to the difference
 between time slots, inside which a vehicle can start
 servicing the first and last customers on the route. In
 the end, the results are improved using simple cus
 tomer reinsertions. A closely related operator is the

 Or-opt introduced by Or (1976) for the traveling sales
 man problem. The basic idea is to relocate a chain of Z
 consecutive vertices (customers). This is achieved by
 replacing three edges in the original tour by three new
 ones without modifying the orientation of the route
 as illustrated in Figure 3.

 Koskosidis et al. (1992) describe an extension of
 the cluster-first, route-second algorithm of Fisher and
 Jaikumar (1981) for the variant of the VRP with soft
 time window constraints, where the time windows
 can be violated at a cost. The problem is heuristically
 decomposed into a capacitated clustering problem
 and a series of traveling salesman problems with soft
 time windows. The clustering problem is solved with
 a greedy heuristic procedure that assigns customers
 to selected seeds according to a regret function repre
 senting the penalty of not assigning the customer to
 its closest seed. Then, an attempt is made to find new

 '-1 i-l z+2

 I . ;;t '. ) LAJ y+i j 7+i j
 Figure 3 The Or-Opt Operator
 Note. Customers /' and / +1 are relocated to be served between two cus

 tomers j and y +1, instead of customers / -1 and / + 2. This is performed
 by replacing three edges (/' -1, /), (/ +1, / + 2), and (y, y +1) by the edges
 (/' -1, / + 2), (y, /), and (/' +1, y +1), preserving the orientation of the route.
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 seed customers with lower clustering cost, and local
 exchanges between all customer pairs belonging to
 different clusters are performed. For the routing part,
 the authors propose a combination of a total enu

 meration algorithm, a reduced gradient scheduling
 algorithm, and the branch exchange heuristic of Lin
 and Kernighan (1973). The iterative master-slave solu
 tion procedure approximates linearly the clustering
 costs and improves the approximation successively
 through the actual routing costs obtained. Numerical
 results based on randomly generated and benchmark
 problem sets indicate that the algorithm outperforms
 Solomon's insertion heuristic and 2-opt and 3-opt
 improvement heuristics of Baker and Schaffer (1986),
 though at the cost of a clearly higher computational
 effort.

 Potvin and Rousseau (1995) compare different edge
 exchange heuristics for VRPTW (2-opt, 3-opt, and Or
 opt) and introduce a new 2-opt* exchange heuristic.
 The basic idea in 2-opt* is to combine two routes so
 that the last customers of a given route are intro
 duced after the first customers of another route, thus
 preserving the orientation of the routes. The opera
 tor is illustrated in Figure 4, where the edges (/, i +1)
 and (/,; + 1) are replaced by (/,; +1) and (;, i + 1),
 i.e., the end portions of two routes are exchanged.

 As a special case, it can combine two routes into
 one if edge (/, i + 1) is the first one on its route
 and edge (;',/ + 1) the last one on its route or vice
 versa. A hybrid approach based on Or-opt and 2-opt*
 exchanges is found to be particularly powerful. This
 approach oscillates between the two neighborhoods
 by changing the operator each time local minimum is
 found. The authors also test an implementation where
 the two operators are merged together. The initial
 solutions are created with Solomon's II heuristic.

 Prosser and Shaw (1996) compare intraroute
 2-opt by Lin (1965) and interroute operators relo
 cate, exchange, and cross, originally proposed by
 Savelsbergh (1992) for the classical VRP. The 2
 opt works by reversing part of a single route (see

 L J+l ~ 1 7+1

 ooa j /+1 j

 Figure 4 2-0pt* Operator
 Note. The customers served after customer / on the upper route are rein

 serted to be served after customer j on the lower route, and customers after

 j on the lower route are moved to be served on the upper route after cus
 tomer /'. This is performed by replacing edges (/', / +1) and (J, j +1) with
 edges (/', y' +1) and (y,/ + 1).

 Figure 5 Relocate Operator
 Note. The edges (/' -1, /'), (/', / +1), and (j, j +1) are replaced by (/ -1,
 ' +1). (/> ')> and (/', y +1), I.e., customer / from the origin route is placed
 into the destination route.

 Figure 1). The relocate operator simply moves a cus
 tomer visit from one route to another. It is illustrated

 in Figure 5.
 The exchange heuristic swaps two visits in differ

 ent routes. This is pictured in Figure 6. Finally, cross
 is similar to 2-opt* proposed by Potvin and Rousseau
 (1995) for VRPTW. Initially, a virtual vehicle, which
 performs the visits not carried out by the real vehi
 cles, exists. This virtual vehicle is different from the
 real ones in two respects. First, the virtual vehicle
 can make an unlimited number of customer visits.

 Second, the cost incurred by the virtual vehicle when
 it performs a customer visit is typically higher than
 that incurred by a real vehicle.
 De Backer et al. (1997) report research similar to

 Prosser and Shaw (1996) in the constraint program
 ming (CP) context. CP is a paradigm for representing
 and solving a wide variety of problems. Tackling com
 binatorial problems generally involves manipulating
 variables that can take a finite number of values.
 In CP, a domain is associated with every variable.
 The domain is created by using constraints on vari
 ables that restrict the possible combinations of values
 for the variables. Looking locally at a particular con
 straint, the CP algorithm attempts to remove from the
 domain of each variable involved in that constraint
 values that cannot be part of any solution. This reduc
 tion of a variable's domain triggers the examination of
 all constraints involving this variable, which in turn

 Figure 6 The Exchange Operator
 Note. The edges (/' -1, /), (/', /' +1), (y -1, j), and (j, j +1) are replaced
 by (/ -1, j), U, / +1), (y -1, /), and (/, j' +1), i.e., two customers from
 different routes are simultaneously placed into the other routes.
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 may reduce other domains. This recursive process
 stops when either no new domain reduction has taken
 place or a domain becomes empty. In constraint pro
 gramming, the computation is driven by constraints,
 thus giving them an active role. The problems are
 then solved using often complete search techniques
 such as depth-first search and branch and bound. For

 more details on CP, see, for example, Jaffar and Lassez
 (1986) and Jaffar and Maher (1994).
 Other frequently applied neighborhood operators

 are the A-interchange of Osman (1993), the CROSS
 exchange of Taillard et al. (1997), the GENI-exchange
 of Gendreau et al. (1992), and ejection chains (Glover
 1991, 1992). The A-exchange generation mechanism
 can be described as follows: Given a solution for the

 problem represented by a set of routes S = {rlf...,
 rp,... ,rq,... ,rk], a A-interchange between a pair
 of routes (rp, rq) is a replacement of a subset of
 customers S2 c rp of size |SX | < A by another
 subset S2 c rq of size |S2| < A to get two new
 routes rp = (rp - Sa) U S2 and rq = (rq - S2) U
 S: and a new neighboring solution Sf = {rlf
 ... ,rp,... ,rq,... ,rk). The neighborhood NA(S) of a
 given solution S is the set of all neighbors S' gener
 ated in this way for a given value of A.

 In CROSS-exchanges, the basic idea is to first
 remove two edges (i ? 1, i) and (fc, k + 1) from a first
 route, while two edges (j ? 1,;), and {1,1 + 1) are
 removed from a second route. Then the segments i ? k
 and j ? Z, which may contain an arbitrary number
 of customers, are swapped by introducing the new
 edges (i - 1, ;), (/, k + 1), (j - 1, z), and (fc, / + 1) as
 illustrated in Figure 7.
 Ejection chains (Glover 1991, 1992) are based on

 the notion of generating compound sequences of
 moves, leading from one solution to another, by
 linked steps in which changes in selected elements
 cause other elements to be ejected from their current
 state, position, or value assignment. In the VRP con
 text, moves refer to the removal of a customer from
 its route and its reinsertion in another route. The goal

 Figure 7 CROSS-Exchange
 Note. Segments (/', k) on the upper route and (j, I) on the lower route are
 simultaneously reinserted into the lower and upper routes, respectively. This

 is performed by replacing edges (/ - 1, /), (k, k + 1), (y - 1, j), and (/,
 / +1) by edges (/' -1, /), (/, k +1), (/ -1, /), and (k, I +1). Note that the
 orientation of both routes is preserved.

 0

 Figure 8 The GENI-Exchange Operator
 Note. Customer / on the upper route is inserted into the lower route between

 the customers / and k closest to it by adding the edges (y, /') and (/, k).
 Because y and k are not consecutive, one has to reorder the lower route.
 Here, the feasible tour is obtained by deleting edges (y, j +1) and (k -1, k)
 and by relocating the path {/' +1,..., k -1}.

 is to "make room" for a new customer in a route by
 first removing another customer from the same route.
 In each phase within the ejection chain, one customer
 remains unrouted. The removal and insertion proce
 dures are repeated until one can insert a customer into
 another route without the need to remove (eject) any
 customer. The GENI operator is an extension of the
 relocate neighborhood in which a customer can also
 be inserted between the two customer nodes on the
 destination route that are nearest to it, even if these
 customer nodes are not consecutive. The operator is
 illustrated in Figure 8.
 Thompson and Psaraftis (1993) propose a method

 based on the concept of cyclic fc-transfers that involves
 simultaneously transferring k demands from route V
 to route Is? for each ; and fixed integer k. The set
 of routes {V), r = 1,..., m constitutes a feasible solu
 tion, and 8 is a cyclic permutation of a subset of
 {l,...,m}. In particular, when 8 has fixed cardinal
 ity C, we obtain a C-cyclic /c-transfer. By allowing
 k dummy demands on each route, demand trans
 fers can be performed among permutations rather
 than cyclic permutations of routes. Due to the com
 plexity of the cyclic transfer neighborhood search,
 it is performed heuristically. A general methodology
 developed by Thompson and Orlin (1989) is used
 for searching cyclic transfer neighborhoods. They
 transform the search for negative cost cyclic transfers
 into a search for negative cost cycles in an auxiliary
 graph. Savelsbergh's (1986) 2-opt procedure is used
 to maintain local optimality of the routes at all times,
 and the initial solutions are constructed using the II
 heuristic of Solomon. The three-cyclic, two-transfer
 operator is illustrated in Figure 9.
 Antes and Derigs (1995) propose a parallel con

 struction approach that constructs and improves sev
 eral tours, simultaneously. The approach is based on
 the concept of negotiation between customers and
 tours. First, each unrouted customer requests a service
 cost from every tour and sends a proposal to the tour
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 Figure 9 The Cyclic Transfer Operator
 Note. The basic idea is to simultaneously transfer the customers denoted by
 white circles in a cyclical manner between the routes. More precisely, here
 customers a and c in Route 1, f and j in Route 2, and o and p in Route 4 are
 simultaneously transferred to Routes 2, 4, and 1, respectively, and Route 3
 remains untouched.

 that offered the lowest price, and second, each tour
 selects the most efficient proposal. The prices are cal
 culated according to Solomon's evaluation measures
 for insertion (heuristic II). Once a feasible solution is
 constructed, the number of tours is reduced by one
 and the problem is resolved. The authors propose
 also a post-optimization approach, where some of the
 most inefficient customers are first removed from the

 tours and then reinserted using the negotiation pro
 cedure described above.

 Russell (1995) embeds global tour improvement
 procedures within the tour construction process. The
 construction procedure used is similar to that in
 Potvin and Rousseau (1993). N seed points represent
 ing fictious customers are first selected using the seed
 point generation procedure of Fisher and Jaikumar
 (1981), originally proposed for the classical VRP. The
 basic idea is to use vehicle capacity information to
 create sectors and decide the distance of the seeds
 from the depot within each sector. Three ordering
 rules are used to select next customer for insertion,
 namely earliest time window, farthest distance from
 depot, and width of the time window augmented
 by distance from the depot. The local search method
 employs a scheme developed by Christofides and
 Beasley (1984). In this scheme, a move is performed
 by deleting and reinserting four customer points close
 to each other. For each customer, the best two routes

 are first determined according to the insertion cost
 of Solomon (1987), because it would be computation
 ally intractable to evaluate all route assignments. This
 interchange procedure is applied after every k cus
 tomer has been routed. This approach is compared to
 the fc-opt multiple tour branch exchange heuristic of
 Russell (1977). The author concludes that the hybrid
 approach of embedding improvement into the con
 struction procedure is superior compared to the tra
 ditional two-phase approach, i.e., route construction
 followed by solution improvement.

 Thangiah et al. (1995) examine the vehicle rout
 ing problems with time deadlines (VRPTD), i.e., with
 out earliest time window. They create two heuristics
 based on principles of time-oriented sweep and
 cheapest insertion procedures for solving the VRPTD,
 followed by A-interchanges of Osman (1993). The
 authors conclude that the two proposed heuristics
 perform well for problems in which the customers are
 tightly clustered or have long deadlines.
 Hamacher and Moll (1996) describe a heuristic for

 real-life VRP's with narrow time windows in the con

 text of delivery of groceries to restaurants. The algo
 rithm is divided into two parts. In the clustering step,
 the customers are partitioned into regionally bounded
 sets using the structure of the minimal spanning tree
 (MST). The MST is divided into subtrees, where nodes
 of each subtree represent the customers belonging to
 one tour. Several weight functions based on the num
 ber of customers, distance, total demand, and time
 window types are used to determine whether a sub
 tree leads to a cluster. Then, customers within these
 sets are routed using a simple cheapest insertion algo
 rithm followed by a local improvement phase, which
 cuts out pieces of the tour and inserts them back at
 another feasible location within the same tour. If a
 feasible solution is not found, the remaining unrouted
 customers are scheduled manually.

 Shaw (1997) describes a large neighborhood search
 (LNS) based on rescheduling selected customer visits
 using CP techniques. LNS is analogous to the shuf
 fling technique used in job-shop scheduling (see, for
 example, Applegate and Cook 1991), which is, itself,
 inspired from the shifting bottleneck procedure of
 Adams et al. (1988). The search operates by choosing
 in a randomized fashion a set of customer visits. The
 selected customers are removed from the schedule,
 and then reinserted at optimal cost. To create opportu
 nity for interchange of customer visits between routes,
 the removed visits are chosen so that they are related.
 Here, the term related refers to customers that are
 geographically close to each other, served by the same
 vehicle, have similar demand for goods and simi
 lar starting times for service. A branch-and-bound

 method coupled with CP is then used to reschedule
 removed visits. In the initial solution, each customer
 is served by a separate vehicle. Due to high compu
 tational requirements, this approach can be applied
 only to problems where the number of customers per
 route is relatively low.

 Shaw (1998) uses an LNS approach similar to
 Shaw's (1997) above approach for solving vehicle
 routing problems. The basic difference is the usage of
 constraint-based limited discrepancy search (LDS) in
 the reinsertion of customers within the branch-and

 bound procedure. For more details about LDS, see
 Harwey and Ginsberg (1995). The number of visits to
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 be removed is increased during the search each time
 a number of consecutive attempted moves have not
 resulted in an improvement of the cost. LDS is used to
 explore the search tree in order of an increasing num
 ber of discrepancies, a discrepancy being a branch
 against the best insertion places. For instance, a single
 discrepancy would consist in inserting a customer at
 its second cheapest position.

 Schrimpf et al. (2000) introduce also a methodol
 ogy similar to LNS that the authors name "ruin and
 recreate." Three strategies are first used to remove a
 set of customers from a solution. The removed cus
 tomers are then reinserted in random order using a
 greedy cheapest insertion heuristic. The removal pro
 cedure removes customers randomly, based on the
 distance to a randomly selected key customer and a
 set of succeeding customers on the same route with
 the key customer. To minimize the number of routes,
 a fixed penalty is set for routes exceeding the desired
 minimum number. During the search, solutions that
 worsen the objective function value are also accepted
 if the worsening is within a threshold.
 Caseau and Laburthe (1999) describe a heuristic

 specifically designed for large routing problems. The
 authors introduce an LDS variation to the parallel
 cheapest insertion heuristic that branches between the
 best and second best alternative routes for each cus
 tomer if the differences in insertion costs are small.

 During solution construction, three moves are consid
 ered after each insertion, namely 2-opt*, reinsertion
 of a chain of consecutive customers from a route r

 into another route r', as well as a simple customer
 transfer move. When no feasible insertion place can
 be found, three different types of moves are consid
 ered to make room for the unrouted customer. The
 first move, swap, removes a chain of consecutive cus
 tomers from r and inserts it into another route r'. The
 second move, relocate, removes a vertex from r, and
 inserts it into another route r', which may recursively
 require that another vertex is removed from r', etc.,
 followed by reoptimization of each route concerned
 by the move. The last move, flush and relocate, first
 removes from r all nodes that can be directly relo
 cated into another route, before trying to insert cus
 tomer c{. In cases where the number of customers on a
 route is less than 30, the order of the customers within

 the route is optimized using the exact constraint
 based branch-and-bound algorithm by Caseau and
 Laburthe (1997). Otherwise, in case of longer routes,
 3-opt is used to modify routes after each insertion.
 The authors also try to restrict the customers included
 in each route to a particular geometric zone.
 Hong and Park (1999) propose a two-phase heuris

 tic algorithm that consists of a parallel insertion
 method for clustering and a sequential linear goal

 programming procedure for routing. The primary cri
 terion for the algorithm is the minimization of the
 total traveled distance instead of the number of vehi
 cles, and the second criterion is the minimization of
 the total customer waiting time. The seed customers
 are selected by identifying customers that cannot be
 served on the same route due to time or vehicle con

 straints. The remaining customers are inserted into
 these initialized tours so that the increase in route dis

 tance and waiting time is minimal. Similar to Potvin
 and Rousseau (1993), customers with a small num
 ber of feasible insertion locations and a large differ
 ence between the best and next best insertion places
 are considered for clustering first (regret measure). At
 the end of the clustering stage, groups are reformed
 using Or-opt and 2-opt improvement procedures. In
 the routing stage, the goal programming model is
 decomposed into two linear programming subprob
 lems, where either total distance or waiting time
 is minimized first. The authors report slightly bet
 ter results than Potvin and Rousseau (1993), though
 using longer computation time.

 Cordone and Wolfer-Calvo (2001) propose a deter
 ministic heuristic based on classical fc-opt exchanges
 combined with a procedure to reduce the number of
 routes. The special feature of the algorithm is that it
 alternates between minimization of total distance and

 of total route duration to escape from local minima.
 The algorithm builds a set of initial solutions using
 Solomon's insertion heuristic II, applies a local search
 procedure (exchanges two or three arcs) to each of
 them, and chooses the best one. The route reduc
 tion procedure tries to insert each customer of one
 route at a time into another route. If simple insertion
 fails, a simple ejection chain (Glover 1991, 1992) is
 tried, where a customer, c;, is first removed from the
 target route, rn, and inserted into some other route,
 rm, before inserting the current customer c{ into r?.
 The authors use special implementation techniques to
 reduce the computation time. The first technique is
 based on so-called macronodes. The macronode is a
 collapse of whatever sequence of nodes into a sin
 gle one that is easier to handle (see Cordone and
 Wolfler-Calvo 1997). The other techniques are explor
 ing the fc-neighborhood in lexicographic order (for
 details, see Savelsbergh 1986) and keeping in mind
 the best exchange for each route, each pair, and each
 triplet of routes.

 Braysy (2003) describes several local search heuris
 tics using a new three-phase approach for the
 VRPTW. In the first phase, several initial solutions are
 created using the route construction heuristics with
 different combinations of parameter values. In the sec
 ond phase, an effort is put to reduce the number
 of routes using a new ejection chain-based approach
 (Glover 1991, 1992) that also considers reordering of
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 the routes. In the third phase, Or-opt exchanges are
 used to minimize total traveled distance. The first
 construction heuristics borrow their basic ideas from

 the studies of Solomon (1987) and Russell (1995).
 Routes are built, one at a time, in sequential fash
 ion, and after k customers have been inserted into the

 route, the route is reordered using Or-opt exchanges.
 In addition, new seed selection schemes are intro
 duced. The second heuristic draws its basic con
 cepts from the savings heuristic of Clarke and Wright
 (1964). Here, a parallel version of the savings heuristic
 is implemented, and the original measure of savings
 is modified to also consider changes in waiting times.

 Moreover, the customers in the combined route are
 reordered before evaluating the savings incurred by
 uniting the two routes.

 Table 2 summarizes some of the results obtained
 by described local search algorithms. We could not
 include all the algorithms described in the table due
 to lack of information (not all authors report results
 properly or use Solomon's problem set). In Table 2,
 most of the algorithms are deterministic in nature.
 The only stochastic approaches are that of Russell
 (1995) , Shaw (1997, 1998), and Schrimpf et al. (2000).
 Russell (1995) and Cordone and Wolfler-Calvo (2001)
 implemented their algorithm in Fortran, and Potvin
 and Rousseau (1995), Antes and Derigs (1995), Shaw
 (1998), and Caseau and Laburthe (1999) used C.
 Thompson and Psaraftis (1993), Prosser and Shaw
 (1996) , Shaw (1997), and Schrimpf et al. (2000) do
 not report the software used. The number of vehi
 cles is considered as a primary optimization criterion
 by all authors except Prosser and Shaw (1996), where
 only the total distance of the routes is minimized. The
 secondary objective is total distance in most papers.
 Thompson and Psaraftis (1993), Potvin and Rousseau

 (1995), and Russell (1995) optimize the total duration
 of routes; this may cause an overestimation of the
 total distance values and should be taken into account

 in the comparison.
 According to Table 2, the methods of Schrimpf et al.

 (2000) and Braysy (2003) are the best ones with respect
 to solution quality. The difference in the cumulative
 number of vehicles is about 14%, compared to the
 worst method by Prosser and Shaw (1996). The rea
 son for this can be found in the optimization criteria
 used: In Prosser and Shaw (1996), only the total dis
 tance of the routes is considered. Schrimpf et al. (2000)
 dominates all other methods for four problem groups.
 For the easy clustered problem group Cl, Shaw (1997,
 1998), and Caseau and Laburthe (1999) yield equally
 good output, and in RC2 Braysy (2003) performs best.
 It is difficult to conclude anything regarding the com
 putational effort, as many of the authors do not report
 the CPU time or the number of runs required to get
 the reported results. Given the information available,
 the methods of Russell (1995), Caseau and Labur
 the (1999), and Braysy (2003) appear to be the most
 efficient ones. It should also be noted that, due to
 poor performance, Shaw (1997, 1998) do not report
 the results for the problem groups R2, C2, and RC2.
 Thus, these two procedures are not comparable with
 other approaches in terms of robustness.

 The efficiency of the described methods is illus
 trated in Figure 10. In Figure 10 we included only
 approaches where a sufficient amount of information
 is provided by the authors. At least the computer,
 number of computational runs, the time consump
 tion, and the number of vehicles must be reported.
 From Figure 10, one can see that difference in time
 consumption between Solomon (1987), Potvin and
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 Figure 10 The Efficiency of the Described Methods
 Note. The notation CNV refers to the cumulative number of vehicles required to solve all 56 test problems. Note that the time consumption of each method is

 normalized to Sun Sparc 10 using Dongarra's (1998) factors to facilitate the analysis.
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 Rousseau (1993), Thompson and Psaraftis (1993), and
 Antes and Derigs (1995) is quite small. Therefore,
 only Antes and Derigs (1995), Russell (1995), and
 Braysy (2003) can be considered as Pareto optimal
 in terms of solution quality and time consumption.
 There is no clear rule to determine which Pareto
 optimal approach is the best. The choice depends on
 the preferences of the decision maker. The methods
 by Antes and Derigs (1995) and Russell (1995) are a
 lot faster than the one in Braysy (2003), but they fall
 behind in solution quality.

 4. Conclusions
 The vehicle routing problem with time windows is
 one of the classical research areas in operations re
 search with considerable economic significance. The
 NP-hardness of the VRPTW requires heuristic solution
 strategies for most real-life instances. The research on
 approximation methods has, over the years, produced
 a wide variety of heuristic approaches for the VRPTW.
 In this paper, methods based on classical solution con
 struction and improvement techniques were compre
 hensively reviewed.

 VRPTW heuristics are usually measured against
 two criteria: solution quality in terms of objective
 function value, and speed. In our opinion, simplic
 ity of implementation, flexibility, and robustness are
 also essential attributes of good heuristics. By flexi
 bility, we mean the ability to accommodate the var
 ious side constraints encountered in a majority of
 real-life applications. As for robustness, an algorithm
 should still able to produce results under difficult
 circumstances, such as when a problem instance is
 pathological. These issues, as well as the question of
 how to evaluate heuristics, are discussed in ?1.

 Recent composite heuristics were found to perform
 best in terms of solution quality, the most efficient
 being those of Russell (1995) and Braysy (2003). These
 methods provide better results than earlier simple
 heuristics, while still being quite fast. As heuristics
 need to be especially effective for very large-scale
 problems, we expect work on these to intensify.
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